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Abstract

This study compared the results of two computer
programs, a flux-difference-splitting (FDS) Godunov-based
scheme and the SCRAMjet Hypersonic Nozzle (SCHNOZ)
parabolized Navier-Stokes code using MacCormack’s method,
applied to a hypersonic nozzle flowfield. Two different
nozzle geometries were investigated for three different Mach
numbers along a typical hypersonic flight trajectory. a
direct comparison between the SCHNOZ and FDS programs was
made by numerically solving the steady Euler equations using
a frozen flow assumption in the nozzle. Significant areas
of interest in comparison of the code results were the
accuracy in capturing the flow physics and the required
computational time. The frozen flow SCHNOZ program is
currently 6 to 10 times more efficient in terms of
computational time than the FDS frozen flow program. The
SCHNOZ and FDS codes demonstrated comparable accuracy in
capturing the flow physics of the nozzle flowfields
considered. The implementation of the viscous terms in the
SCHNOZ code proved to be ineffectual in modeling the viscous
effects in the flowfield. The finite-rate chemistry effects
were important for the nozzle inlet conditions considered,
as the SCHNOZ finite-rate chemistry model calculated nozzle

wall thrusts up to 4% greater than the frozen flow model.
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A Comparison of Computational Fluid Dynamics Computer

Programs for Hypersonic Propulsive Nozzle Flowfields

I. Introduction

1.1 Background

The National AeroSpace Plane (NASP) and other trans-
atmospheric vehicles have rejuvenated interest in the
hypersonic flight regime. The currently proposed propulsive
system in the hypersonic regime for NASP-type vehicles is
the airframe-integrated Supersonic Combustion RAMjet
(SCRAMjet) cycle. Figure 1.1 shows a typical hypersonic
vehicle with an airframe-integrated SCRAMjet nozzle. The
SCRAMjet nozzle contours are designed to generate sufficient
thrust at different flight conditions given a certain
vehicle size, weight, and fuel onboard. With the airframe-
integrated SCRAMjet, this in turn influences the engine
size, vehicle size, and fuel requirements (13:50). Numerous
iterations are thus required in the optimization of the
vehicle and engine design.

The solution to the hypersonic propulsion design

problem will rely heavily upon computational fluid dynamics
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(CFD). This reliance on CFD has been driven by the
decreasing cost of computers and increasing cost of wind
tunnel tests coupled with a limited hypersonic test facility
capability (9:657). The hypersonic propulsive environment,
with associated high Mach numbers and high temperatures,
requires very accurate CFD simulations (7:99).

Additionally, the iteration and optimization required in the
design process of a hypersonic propulsion system demands an

efficient CFD algorithm.

1.2 Purpose

Propulsive nozzles for hypersonic vehicles represent an
extremely demanding test for CFD codes. The flowfield of a
propulsive nozzle, as shown in Figure 1.2, is a complicated
structure with expansion waves, shock waves, contact
surfaces, and the interaction among all three and surface
boundaries such as the nozzle wall or cowl (6:1). Several
CFD codes have been developed to resolve the propulsive
nozzle flowfield of a hypersonic vehicle. As such, the
results of any one CFD code need to be compared with those
from other computer codes.

Doty (6) developed a flux-difference splitting (FDS)
code using the steady Euler equations and assuming perfect
gas to analyze propulsive nozzle flowfields in an effort to
optimize nozzle contours. Doty’s FDS code was later

modified by Schieve (13) to incorporate a calorically
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imperfect gas thermodynamic model. A SCRAMjet Hypersonic
Nozzle (SCHNOZ) parabolized Navier-Stokes (PNS) computer
code was developed by Science Applications International
Corporation (SAIC) for the NASP Program (20). The SCHNOZ
code includes algorithms for both viscous flow effects and
finite-rate chemistry reactions in numerically solving the
PNS equations for the flowfield. The purpose of this study
was to compare results from the modified FDS code to SCHNOZ
code results to determine the most accurate and efficient
code in the analysis of a hypersonic propulsive nozzle

flowfield.

1.3 Scope

This research effort sequentially compared the accuracy
and efficiency of Doty’s FDS code with the thermodynamic
model improvement of Schieve (13) to the SCHNOZ PNS code
(20) applied to a hypersonic propulsive nozzle flowfield.
The nozzle contour in the study was a two-dimensional,
maximum thrust, planar nozzle. Included in the study were
nozzle contours determined from Doty’s FDS code by Herring
to be the optimum nozzle configuration over a typical
hypersonic flight trajectory (8) and a more severe expansion
nozzle.

The flow in the two-dimensional hypersonic nozzle was
assumed to be steady, compressible, and rotational. The

fluid in the nozzle was treated as a calorically imperfect,
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but thermally perfect, gas where computations of the
properties downstream of any discontinuity employed the
frozen flow model. The frozen flow model does not account
for chemical reactions within the nozzle. This frozen flow
assumption was justified by Snelling’s finite rate chemistry
investigations, which showed that the rapid expansion within
the hypersonic nozzle essentially froze the chemical
reactions within the nozzle (15:4-4). However, the static
temperatures in the flows considered by Snelling were only
2000 K for uniform flow profile studies, and the nozzle
inlet profiles considered in this study approached 3000 K.
The finite rate chemistry effects become increasingly more
important as the temperature increases (1:373-375).
Therefore, SCHNOZ code runs were also performed using finite
rate chemistry kinetics in the flowfield. Additionally,
perfect gas runs were made using the efficient upwind code
to demonstrate the ability of the perfect gas model to
capture the trends in the hypersonic nozzle flowfield.

The initial internal flowfield of the nozzle was
generated from a RAMJET Performance Analysis cycle analysis
computer code (11). The internal flowfield cycle analysis
solution required the input of the freestream properties at
each flight condition. The freestream properties used were
determined for a typical hypersonic flight trajectory with a
1000 psf dynamic pressure loading (8).

The analysis of the nozzle CFD code results was made at
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three points along the 1000 psf flight trajectory. Flight
conditions of Mach 10, Mach 15, and Mach 20 were considered.
The desired goal was to determine the most effective and
efficient CFD code for use across the entire flight
trajectory.

Significant areas of interest in comparison of the CFD
code results were the required CPU time, the code accuracy
in capturing the flow physics, and the variation of code
results for different flight conditions and different nozzle
entrance profiles. Additionally, since the SCHNOZ code
proved to be very sensitive to grid spacing (13:4-2) the
efficiency and accuracy of grid clustering techniques were
investigated. The AFIT Computer Lab facilities were used to
conduct the computational analysis and comparison with all
computations being performed using double precision floating

point arithmetic 64-bit SPARCstation 2 machines.

1.4 Approach
Running the SCHNOZ code in the inviscid mode allowed

for a comparison between the FDS Godunov-based scheme and
MacCormack’s scheme in the solution of the steady Euler
equations. Prior to the actual nozzle flow analysis, a
determination of the trends exhibited by each code was made
by comparing the results of the FDS Godunov scheme and the
modified MacCormack scheme to a more simple flow situation;

the oblique shock wave. The oblique shock wave has an exact
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analytical solution which may be compared to the results of
the two different schemes. Comparison of the scheme results
to the exact solution indicated the ability of each method
to capture the true physics of the flow.

Because of the inherent non-linearity of the governing
equations and the complicated interactions within the
nozzle, no known analytical solution exists for the
hypersonic nozzle. It was expected that the full viscous,
turbulent, PNS equations modeled in the SCHNOZ program would
provide more accurate information on the propulsive nozzle
flowfield as it accounted for viscous interactions as well
as a turbulence model. For this reason the viscous SCHNO2Z
code was used as the basis for accuracy comparisons between
the codes. 1Investigations of each flight condition were
made operating the SCHNOZ code in both viscous and inviscid
modes. The CPU time required for each code solution was
measured and used to determine the efficiency of the two
codes.

Investigations at each flight trajectory point were
made for an isolated nozzle with no external flow
interactions. This allowed for a clean comparison between
the two codes and the ability of each to resolve the
gradients within the nozzle flowfield. For a combined
(internal with external) flowfield, both computer programs
used non-physical procedures to obtain solutions across the

contact surface downstream of the engine cowl. The FDS
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program obtained a solution by employing two solid surface
boundary conditions and requiring the pressure to match
across the surface (6:193). The SCHNOZ program solution is
obtained by implementing an embedded grid scheme at an
abritrary distance downstream of the cowl, where the grid
spacing is based on the chemical species parameter profile
(4:909). For thrust considerations, the isolated nozzle
flowfield was shown by Snelling to be equivalent to the
combined flowfield for a given cowl geometry (15:4-10).
Therefore, the performance of each code on the isolated
nozzle was a good indicator of the numerically determined

nozzle thrust for each configuration.




Figure 1.1. Typical hypersonic vehicle with airframe-
integrated nozzle (6:5)

Figure 1.2. Expanded view of hypersonic nozzle section
(20:2)
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I1. Theory

2.1 Governing Equations

The governing equations of fluid dynamics and their
abilities to solve fluid flow phenomena are summarized in
Figure 2.1 (9:659). From the conditions present in the
hypersonic propulsive nozzle flowfield discussed previously,
the Navier-Stokes equations are necessary to fully solve the
flowfield. Full Navier-Stokes equations incorporate the
viscous effects of molecular and turbulent dissipation and
diffusion (9:659). In the hypersonic environment, radial
changes in the viscous terms dominate axial or streamwise
changes (1:344) and an accurate solution to the flowfield
may be obtained by dropping the streamwise derivatives of
viscous terms. The resulting set of equations, with the
elimination of all time derivatives, are termed the
parabolized Navier-Stokes (PNS) equations. Full discussions
of the Navier-Stokes and PNS equations and their numerical
implementation are presented in Anderson, Tannehill, and
Pletcher (2). The PNS equations employed in the SCHNOZ
computer program are presented in Appendix A.

The effects of viscosity and the conduction of heat are
not included in the Euler equations. In the hypersonic
nozzle design, however, the Euler equations are a valuable
tool as the determination of nozzle thrust is dominated by

the inviscid pressure effects. With increasing velocities
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and the favorable pressure gradient in the expansion of the
nozzle, the viscous boundary layer growth is limited, thus
having a lessening effect on the overall flow phenomena
(2:235-236). The increasing velocity resulting from the
nozzle expansion also acts to diminish the free shear layer
interactions within the nozzle flow. The Euler equations are
capable of capturing the relevant flow phenomena and
discontinuities within the hypersonic propulsive nozzle

flowfield.

2.2 Thermodynamic Models

The thermodynamic model employed greatly influences the
flow properties downstream of discontinuities within the
hypersonic nozzle. The simplest model is the perfect gas.
A perfect gas model assumes no intermolecular forces and
constant specific heats,'cv and c,, resulting in a constant
specific heat ratio, y. The perfect gas obeys the thermal

equation of state (1:381):
p:pRT (2.1)

The perfect gas assumption breaks down when high
temperatures are encountered within the nozzle flowfield.
In real gases, y is not a constant, but is dependent on the
temperature of the flowfield. A calorically imperfect, but
thermally perfect gas model allows for the temperature

dependence of the flow by considering the internal structure




of the gas. The calorically imperfect gas assumes that the
thermal equation of state, Eq. (2.1), still holds, but
accounts for a non-constant y resulting from increased modes
of energy available to the gas molecule; see Appendix B.
The calorically imperfect gas assumption is coupled with a
frozen flow model which assumes that the molecular
composition of the gas remains unchanged throughout the
flowfield. The complex chemical mixtures which exit the
SCRAMjet combustor can be treated as a mixture of thermally
perfect gases. The resulting flowfield properties such as
enthalpy and specific internal energy are no longer simple
functions of the temperature, but rather are dependent on
the chemical composition of the mixture and the functional
dependence on temperature of each species contained within
the mixture.

In real gases, the flow properties are a function of
not only temperature, but pressure and time as well (7:99).
The nonequilibrium chemically reacting gas thermodynamic
model accounts for the chemical reactions within the
flowfield. The nonequilibrium chemically reacting gas
allows for a changing molecular composition based on finite-
rate chemistry kinetics. As discussed in Appendix B, a
finite-rate chemistry kinetics package is coupled with the
governing equations of the flow and determines the chemical
composition and resulting flow properties based on the

reaction rates for a given set of species and chemical
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reactions. The nonequilibrium chemically reacting gas is a
more complete model of the flow physics, but also more

complex to incorporate in a solution procedure.

2.3 Computational Methodologies

2.3.1 PNS Solvers

PNS equation solvers are in widespread use in the
analysis of the hypersonic flow regime (1:360). The
popularity of the PNS solvers is attributable to the
efficiency in predicting the hypersonic flowfield with a
great savings in computational storage and time in
comparison to a full Navier-Stokes solution (2:420).
Unfortunately, to obtain an accurate solution requires a
greater amount of user interaction and adjustment of various
input parameters (1:348-349). The parabolization of the
Navier-Stokes equations allows for an explicit downstream
marching finite-difference solution technique.

A Scramjet Hypersonic Nozzle (SCHNOZ) parabolized
Navier-Stokes computer code was developed by Science
Applications International Corporation (SAIC) for the NASP
Program (20). The SCHNOZ Code is the nozzle analysis
component of an integrated system of two-dimensional PNS
codes for analyzing SCRAMjet propulsive nozzle flowfields
(20:7). SCHNOZ unifies previous work in rocket propulsive
nozzles and the extension of the PNS equations to supersonic

mixing problems and finite rate chemistry (20:4).
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SCHNOZ uses the MacCormack method to explicitly solve
the PNS equations in conservative form (20:4). The
MacCormack predictor-corrector method determines the
downstream flux values based on the average of a predicted
and then corrected downstream flux derivative (2:482-485).
To dampen oscillations inherent in the MacCormack scheme in
the presence of strong discontinuities, a self-adjusting
hybrid scheme developed by Harten and Zwas is added to
modify the MacCormack scheme (20:24).

To account for chemically reacting flow in the nozzle,
SCHNOZ employs a finite-rate chemical kinetics package
developed by AeroChem (20:20-21). Additionally, the SCHNO2Z
code contains two high Reynolds Number turbulence models to
handle the turbulent nature of the nozzle inlet flow exiting
from the combustor (20:9).

The PNS equations are hyperbolic in nature, thus
requiring supersonic flow for a valid, well-posed problem
(2:24). The addition of the viscosity effects causes a
small subsonic region at the viscous boundary layer
interaction region (1:204). This subsonic region is
mathematically elliptic and the downstream marching
technique of MacCormack’s method is invalid in this region
(1:204). The SCHNOZ code removes this subsonic portion of
the boundary layer and enforces a slip boundary condition,
resolving the flow at the wall based on a viscous-

characteristic formulation related to the pressure and flow
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angle at the boundary (20:13-14).

Snelling (15) used the SCHNOZ code to examine the
effects of non-uniform nozzle entrance profiles on pitching
moments. Snelling investigated several inlet nozzle profiles
on an isolated and combined internal flow/external flow
nozzle. In that study Snelling showed that the chemical
kinetics considerations are unnecessary extra computational
time, producing nearly identical results to the frozen flow
model (15:5-1). Snelling also found that the addition of
the external flow interaction had little effect on the

overall nozzle thrust (15:4-11).

2.3.2 Flux-Difference-Splitting

The solution of discontinuities in the nozzle flowfield
is representative of the Riemann problem. The Riemann
problem describes the collapse of flowfield discontinuities
to a local point of consideration (6:2,11-17). These
discontinuities give rise to fluxes that are not present in
the initial value line. The differences between these
fluxes and the initial values of the flowfield are split
along the characteristic waves developed by the local
collapse of the discontinuity (6:2). This technique is
known as the flux-difference-splitting (FDS) method. Full
details on the FDS method and the solution of the Riemann
problem using a Godunov scheme are given in reference (6)

and summarized in Appendix C.
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The MacCormack scheme applied to the Riemann problem
and FDS was analyzed by Steger and Warming (17) for the
solution of time dependent flow in a shock tube. Similarly,
Roe (12) used a density ratio across the discontinuities to
influence the fluxes considered in the Riemann problem to
solve the unsteady Euler equations. Grossman (7) modified
the upwind FDS schemes developed by Van Leer, Steger and
Warming, and Roe to incorporate a real-gas equivalent ratio
of specific heats based on equilibrium chemical reactions in
high temperature flow. Sod (17) provides an excellent
survey of the different solution schemes applied to the
Riemann problem for the unsteady Euler equations.
Chakravarthy (3) provides a comprehensive comparison of
upwind schemes based on the FDS method for unsteady
flowfields that are integrated in time to the steady state.

However, the determination of the nozzle thrust for a
propulsive vehicle requires only the steady-state solution
of the flowfield (6:2). The use of the time-dependent
schemes mentioned above are not very efficient when advanced
to the steady state. It is more efficient to directly solve
the steady form of the Euler equations. Pandolfi (10),
using a Godunov scheme, applied the unsteady FDS method to
the solution of steady supersonic flows.

Doty (6) employed an upwind FDS method based on the
Godunov scheme to solve the Riemann problem. Doty’s work

showed that the shock capturing ability of the first-order
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accurate upwind FDS method provided solutions comparable in
accuracy to a higher-order MacCormack method, but with a
tremendous savings in computational time (6:75).

Herring (8) demonstrated the utility of the upwind FDS
code developed by Doty in an optimization study of nozzle
contours for a typical hypersonic flight trajectory assuming
a calorically perfect gas in the nozzle. Schieve (13)
modified Doty’s code to use a calorically imperfect
(thermally perfect) gas model and showed a difference in

nozzle thrust of over 16% compared to the perfect gas model.
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Figure 2.1. Capabilites of gas dynamics equations (9:659).




III. Methodology

3.1 FDS Code Description
3.1.1 Governing Flow Equations
The FDS code of Doty (6) solves the following

divergence vector form of the Euler equations:

3E , or _

where the B and P flux vectors are given by

pu pVv
- | pu+p -| pvu .

E Ppuv , r ov2ep (3.2)
u(pe+p) vipe+p)

The vector components represent the continuity, x momentum,
y momentum, and energy equations, respectively. The
governing vector equation is independent of the
thermodynamic models considered in the FDS study and is
applicable to both perfect and calorically imperfect gas

flows.

3.1.2 CcComputational Scheme
The governing equations are transformed from physical
space to the computational space assuming the following

transformation:

nn

(3.3)

E=x
n =n(x,y)

The governing equation, Eq. (3.1), is transformed in
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computational space as:

oEm _, oE _, 3 (3.4)

13 =nxa“ -nyan

Detailed information on the coordinate transformation is

presented in reference (6:142-143).

The transformed governing equations are numerically
solved in computational space using a first-order accurate
FDS method. The FDS method developed by Doty is based on
the Godunov initial-value Riemann problem. The Riemann
problem and the first-order accurate upwind FDS method are
described in detail in Appendix C. Essentially, the Riemann
problem is used to resolve discontinuities in the flowfield
into numerical fluxes. The resulting Riemann fluxes are
propagated along characteristics determined by the local
wave angle (6:9).

To axially march the solution from station i to i+l in
Figure 3.1, the Godunov-based FDS method resolves the
Riemann fluxes and then computes flux differences based on
the initial value flux at axial location i. These flux
differences are then split based on their direction of
propagation such that the resulting flux difference is sent
in the physically correct direction.

The stencil for the first-order accurate FDS method is
presented in Figure 3.1. Note in Figure 3.1 that the
Riemann fluxes are resolved at the grid midpoints, j+1/2 and

j-1/2. The first-order accurate upwind FDS scheme uses
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positively biased information from node j-1/2 and negatively
biased information from node j+1/2 to advance the solution
from node (i,j) to (i+1,j) (13:17). The first-order
accurate FDS finite-difference approximation to the
transformed governing equation, Eq. (3.4), for an interior

grid point is given by (6:15):

ES" = Bj - AEn, {dEj./; + dB;, )} - ARn {dFj., + dFad (3.5)

It should be noted that the FDS finite-difference equation,
Eq. (3.5), is independent of the Riemann problem solution

procedure and the thermodynamic model.

3.1.3 Boundary Conditions

The interior grid point solution, Eq. (3.5), is not
valid at boundaries, as it would require information outside
the physical domain. As shown in Figure 3.2, there can be
no negatively biased information from a node j+1/2
influencing the solution because of the solid wall upper
boundary. The solution procedure for the FDS solid wall
boundary is a two step wave-corrector requiring the velocity
vector to be tangent to the solid boundary (6:190). A
contact surface boundary point , such as would exist for the
interaction between the internal nozzle flow and external
freestream, essentially uses a coupled solid wall boundary

condition. An iterative solution procedure is necessary to
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match the pressure and flow angle for the contact contact
surface (6:193). Details on the first-order accurate FDS
boundary point calculations are presented in reference

(6:189-194) .

3.1.4 Decoding the Solution

Once the solution has been marched downstream to the
next axial location, i+1, the primitive flow variables must
be extracted from the newly determined E and F flux vectors
so that the Riemann problem may be solved. This allows the
solution to continually march downstream in the axial
direction. The extraction of the primitive varaibles from
the B and F flux vector solutions is referred to as decoding
the solution. The decode procedure differs depending on the
thermodynamic model employed in the calculation. The
perfect gas decode procedure is a closed form solution
procedure based on the flux vector components and the
conservation of stagnation enthalpy. The calorically
imperfect gas decode procedure is an iterative process based
on temperature that must incorporate the imperfect gas model
into the conservation of stagnation enthalpy. Differences
in the decode procedure for the two different thermodynamic

models are presented in Appendix D.




3.2 PNS Code Description
3.2.1 Governing Flow Equations
The SCHNOZ code solves the following conservative form

of the PNS equations:

9E , OF ,g- _Q(_Ea_f) (3.6)

where the flux vectors are

[ 0
pu pVv 0 0
p+pu? puv_ 0 u
E = uv F = |ptpVv G = St £f=1v| (3.7)
guH psz -i[P 1|J.i(lz-)] H
puc; pVe, 9| pr =~ dy\2 o;
i

The vector components of Eq. (3.7) represent the continuity,
X momentum, y momentum, energy equation, and species
continuity equations, respectively. The governing vector
equation is not independent of the thermodynamic models
considered in the SCHNOZ study. The species continuity
equation is necessary for finite-rate chemistry
considerations. For perfect or calorically imperfect gas
frozen flow studies, the species continuity equation is not
implemented. Additionally, for inviscid flow calculations
of a perfect or calorically imperfect frozen gas, the
viscous terms are dropped and the PNS equations reduce to
the Euler equations.

The governing equations are transformed from physical
space into rectangular computational coordinates, ¢ and 7,
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through the following transformation:

§ =x
N =1y -y / yplx) -y (2] (3.8)
where y, and y, represent the upper and lower physical

boundaries respectively (20:21).

3.2.2 Computational Scheme

The transformed governing equations are numerically
solved in the computational domain using the explicit two-
step MacCormack algorithm. The MacCormack algorithm
spatially marches the solution from an initial data line, i,
downstream to a new axial location, i+1. The first step of
the MacCormack method calculates a downstream predicted
value of the E flux vector, denoted by E' , using the
upstream values of the B, F, 6, and £ flux quantities
(1:197). The second step of the MacCormack method then
uses the predicted flux values, E’, F', 6°, and £, to correct
the downstream flux quantities (1:198). The SCHNOZ program
employs the following second-order-accurate, central-
difference predictor and corrector formulas at an interior
grid point, (i,j), to advance the solution from an axial

location i to i+1 (15:3-2):




Predictor Step:

K -E - 2—5{(1-e)1'j,1 - (1-2e) F, - eF,, - G,AE}

Atb? (.. - (3.9)
N Afﬂz (A, - £, - A& (£, - £.)}
Corrector Step:
gt - 1 (B + B - AE{ *F... + (1-2e) F; + (e-1) Fi_;}
E| 5 157 iT An € Fin b i1
(3.10)

AL + AA‘:’; (A (£ - £5) - A" (£ - £].)1]

where

a =1 (_U_) + (.E) (3.11)
2 |\ o, P O, is1

and for £ = u, v, H, and ¢

g,=0,=1 Gy =0, =P (3.12)

1

The e term in Egs. (3.9) and (3.10) is an alternating switch
(e = 0 at even steps; e =1 at odd steps) used to provide
nonbiased convective differencing (20:23).

The basic MacCormack scheme has been shown to overshoot
and undershoot flow properties downstream of flowfield
discontinuities (20:23, 2:146-147, and 6:24,31). The

oscillation of flow properties about a discontinuity is




remedied using the self adjusting hybrid scheme of Harten
and Zwas (20:23). The Harten and Zwas hybrid scheme adds a
dissipative term to the conservative flow equations of the
MacCormack scheme based on the pressure at surrounding grid
points (20:23). From a corrected value of the flux variable
E, the addition of a viscous term to the MacCormack
solution is implemented to yield the self-adjusting hybrid
value, E, using the following finite-difference

representation (20:23):
i = Ef o+ %(G;LI,ZAEJ{I,Z - 03.1/2AE} ) (3.13)

The § terms are dimensionless parameters varying from 0 to
1, based upon the pressure at the surrounding grid points to
provide appropriate levels of damping to the solution

(20:23).

3.2.3 Boundary Conditions

The SCHNOZ program uses the forward or backward
MacCormack algorithm with an Abbett correction procedure to
handle solid wall boundary conditions (20:31). The Abbett
correction procedure enforces the surface flow tangency
condition at the wall. A corrected pressure, p, is
determined at the wall by considering the wall to be
composed of a series of infinitesimal simple expansion or

compression waves for a small change in surface slope, Af.




The corrected pressure is found from (15:3-3):

P.=Pp - AP g (3.14)
Me-1
where p and M in Eq. (3.14) are the values at the boundary
determined using the MacCormack algorithm. The corrected
pressure is then used to correct the density and the axial
and radial velocity components are determined from the
actual slope of the wall. More details are given by Wolf et

al. (20:33-34).

3.2.4 Turbulence Model

The SCHNOZ program contains two variants of
turbulence modelling equations, the ke and kW high Reynolds
number versions. The turbulence model used in this study is
the common two-equation ke eddy viscosity model which models
the turbulent kinetic energy, k, and energy dissipation, e,
detailed in Appendix A. The ke model was chosen because the
kW model has had difficulties in applications to wall
bounded shear flows such as those in a nozzle (5:507).
Additionally, the implementation of the ke model in the
SCHNOZ code is determined by a correlation to experimental

jet mixing results (5:507).

3.2.5 Decoding the Solution
Unlike the FDS algorithm, the primitive variables are
not a computational necessity at every axial location in the
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downstream marching of the SCHNOZ program. Advances from
one axial position to the next using the MacCormack method
are based only on the flux vectors. The extraction of
primitive variables from the flux vectors (decoding the
solution) is nec.-ssary however, to determine the artificial
damping of the Harten and Zwas hybrid scheme, which is
dependent on the pressure at surrounding nodes. The decode
procedure is also used to obtain the primitive variables at
desired axial locations. The SCHNOZ program uses a
different decode procedure based on the thermodynamic model
employed. For the perfect gas model, a simple closed form
decode procedure is employed based on the flux vector
components. For the thermally perfect frozen flow and the
finite-rate chemistry thermodynamic models, a different real
gas decode procedure is employed depending on whether the
flow is supersonic, M>1, or hypersonic, M>5.

For supersonic flows, an iterative procedure is
employed that uses an assumed pressure value, p’, to
calculate the flow velocity. The total enthalpy and

velocity are then used to calculate the enthalpy, h’:
n' = H - %(u2 + v2) (3.15)

Calculating the species mole fractions, «;, and the
temperature, T’, from the assumed value of p’, the enthalpy

is also calculated using the species formulation:




h* = Ya,h, (T (3.16)
The assumed pressure, p’, is iterated upon until the
calculated enthalpy values of h’ and h® match to a
prescribed tolerance (20:30).

The iteration procedure described above breaks down for
the expanding hypersonic nozzle flow where the kinetic flow
energy, H, is orders of magnitude greater than the thermal
contribution, h (20:31). SCHNOZ uses an iterative decode
procedure for hypersonic flow conditions that is based on a
linear relation between the axial velocity component and

temperature (20:75).

3.3 oblique Shock Validation

3.3.1 Perfect Gas

A demanding test of the two numerical methods is the
oblique shock reflection which contains large
discontinuities in the flowfield properties downstream of
the shock wave. The geometry of this flow situation is
shown in Figure 3.3. Doty, using a perfect gas assumption,
compared the second-order centered MacCormack algorithm to
the first-order upwind Godunov based FDS algorithm using a
10 degree ramp shock wave geometry with a Mach 2.2 incoming
flow (6:31). Figure 3.4 shows the static pressure
distribution along the top wall obtained with the two

different methods compared to the exact analytical solution.




Doty found that the second-order accurate MacCormack method
did no better than the first-order accurate Godunov based
FDS method in capturing the location of the shock (6:24).
Additionally, the MacCormack method overshot the exact
solution before reaching the correct pressure rise, while
the FDS method monotonically approached the correct pressure
(6:24).

The MacCormack method implemented by Doty did not
incorporate the Harten and Zwas hybrid scheme to remedy the
oscillations downstream of the discontinuity. Sod showed
that the addition of the artificial viscosity of the Harten
and 2Zwas hybrid scheme smoothed out the MacCormack method in
the area of discontinuities while retaining second-order
accuracy in the smooth portions of the flow (16:24). The
oblique shock reflection geometry verified the ability of
the first-order Godunov-based FDS scheme to capture the
physics of a strong flowfield discontinuity. This provided
the initiative to implement the FDS method in the analysis

of the hypersonic propulsive nozzle flowfield.

3.3.2 Imperfect Gas

The MacCormack method as implemented in the SCHNO2Z
computer program incorporates the Harten and 2Zwas hybrid
damping scheme. A comparison between the imperfect gas FDS
method and the SCHNOZ frozen flow inviscid solution was made

on the 10 deg oblique shock geometry using the same Mach 2.2

3-12




inlet conditions as Doty used to compare the perfect gas FDS
and MacCormack methods. To allow for a comparison to an
exact analytical solution, the imperfect gas was assumed to
be Argon-free air in the standard mole fraction ratios of
0.79 N, and 0.21 O,. The analytical solution was determined
using an imperfect gas oblique shock wave solver provided by
Schieve (13:91-95).

Figure 3.5 shows the static pressure distribution along
the upper wall obtained with the two different methods
compared to the exact analytical solution. The FDS
imperfect gas method and the SCHNOZ frozen flow solution
equally capture the the location of the shock and the static
pressure downstream of the flowfield discontinuity.
Additionally, with the Harten and Zwas damping scheme the
second-order MacCormack method no longer overshoots the
exact solution and monotonically approaches the correct
pressure as does the first-order accurate Godunov-based

schene.

3.4 Isolated Hypersonic Nozzle

3.4.1 Freestream Conditions
The freestream conditions used in this study are those for a
typical hypersonic flight trajectory with a constant dynamic
pressure, q,, of 1000 psf. Freestream properties were
determined at Mach numbers of 10, 15, and 20 along this

trajectory. Assuming the freestream conditions obey perfect
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gas relations, the freestream static pressure is found from
the definition of Mach number and the constant dynamic

pressure:

(3.17)

The flight trajectory altitude, z, is interpolated from the
1962 Standard Atmosphere Table assuming p = p(z). The
remaining freestream properties are calculated using the
1962 atmosphere. The freestream conditions used in this

study are tabulated in Table 3.1.

3.4.2 Internal Flow Conditions

The initial conditions for the isolated nozzle
investigations were generated from a RAMJET Performance
Analysis (RJPA) cycle analysis code (10). The RJPA code
simulated a Supersonic Combustion RAMJET (SCRAMjet) engine
operating at each flight condition along the hypersonic
trajectory. The SCRAMjet was assumed to operate in a shock-
on-lip condition with the maximum capture of airflow without
spillage (19:3). The shock-on-lip condition is illustrated
in Figure 3.6 where the bow shock wave emanating from the
forebody compression rests on the engine inlet.

The capture area of the SCRAMjet inlet is driven by
airframe geometries and the resulting shock structure
upstream of the inlet (19:3). For this study, an effective
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bow shock of 8 degrees was used to simulate a 2 degree angle
of attack and 6 degree forebody compression on the underside
of the hypersonic vehicle. The SCRAMjet inlet and capture
areas are then determined at each flight condition for the 8
degree compression.

The RJPA program was run simulating an air-breathing,
hydrogen-fueled, SCRAMjet engine cycle using a 14 species
gas mixture with some frozen H, carried through a constant
area combustion process to simulate combustion inefficiency.
The RJPA program calculates the following flow properties at
several stations in the SCRAMjet engine: T, p, o, V, Yo ag
M;; the f subscript denotes frozen flow values. The RJPA
program also calculates the molecular weight (MW) of the
mixture and the mole and mass fractions of each species in
the mixture at specified engine stations. The combustor
exit properties calculated by the RJPA program provide the
initial conditions for the internal nozzle studies.

The FDS code requires an input value of the gas
constant, R, which was determined using the universal gas

constant, R,, and the MW.

RO
R - (3018)
MW

This value of R is used as the initial condition for both
perfect and imperfect gas frozen flow analyses and finite-
rate chemistry flows. The MW and R values remain constant

for the perfect gas and frozen flow models as the molecular
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composition remains fixed. The finite-rate chemistry flow
allows for chemical reactions and hence a change in MW and
the gas constant, R. The ratio of specific heats, %,
determined from the RJPA analysis is used as an initial
condition of the internal nozzle for all flows considered.
The differences between the perfect gas, calorically
imperfect frozen gas, and finite-rate chemistry assumptions
do not effect the initial conditions, but become apparent in
the downstream expansion of the flow in the nozzle; see
Appendix B. The nozzle inlet parameters for the FDS code
are tabulated in Table 3.2 for each flight condition on the
hypersonic flight trajectory.

The internal nozzle inlet conditions for the SCHNOZ
code are presented in Table 3.3 for the same flight
trajectory points. The SCHNOZ code using the perfect gas
assumption requires not only R, but the MW of the mixture.
In essence, the mixture of gases in the nozzle is treated as
a perfect gas with a MW équivalent to the MW of the 14

species gas mixture calculated by the RJPA program.

3.4.3 Nozzle Configuration

As shown in Figure 3.7 (6:46), the hypersonic nozzle
wall consists of two sections. The first section, A-B, is a
circular arc of radius r, followed by a parabolic section,
B-C, with an attachment angle, #,. For the isolated nozzles

used in this study the lower boundary, or cowl wall, E-F, is
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a straight wall section.

The parabolic nozzle contour used for this study is the
optimal nozzle contour for the entire hypersonic flight
trajectory determined from the FDS perfect gas analysis
performed by Herring (9). This analysis arrived at a
parabolic nozzle contour with an attachment angle of 20.6
degrees. Additionally, a much higher circular arc attachment
angle, 0 = 38 deg, is considered to examine the ability of
each code to compute a flowfield with a shock wave (6:49).
The nozzle geometries, x/h and y/h, are characteristic of
geometries considered for hypersonic propulsive nozzles
(6:3). The nozzle geometry parameters for the two nozzles
are listed in Table 3.4.

The nozzle geometry utilized in the SCHNOZ code is
flipped upside relative to the FDS nozzle geometry, however
the pertinent specifications remain the same. The x and y
coordinates for each wall location are determined from the
FDS analysis parabolic contour generator and are used to
generate the nozzle wall input to the SCHNOZ code. The
SCHNOZ wall contour is then calculated from the x and y
coordinates using a cubic spline interpolation routine. The
cubic spline interpolation can lead to small differences
between the two codes in the x and y coordinates and nozzle

wall angles at each wall location.




Table 3.1.

flight trajectory

Freestream conditions for typical hypersonic

[?:;e stream parameter M, = 10 M, = 15 M, = 20
altitude, (km) 33.791 39.581 43.934
static pressure, p (N/m?) 684.0 304.0 171.0
static temperature, T (K) 233.2 249.2 261.2
density, p (kg/m®) 0.01022 0.00425 0.00228
velocity, V (m/s) 3061.4 4746.9 6479.9
specific heat ratio, ¥y 1.4 1.4 1.4

llgas constant, R (J/kg/K) 287.06 287.06 287.06

Table 3.2. Nozzle inlet conditions, FDS inputs
Internal Flow Parameter M, = 10 M, = 15 M, = 20
Mach number 2.0582 3.4736 4.6791
static pressure, p (N/m?) 373,566 199,752 133,921
static temperature, T (K) 2986.1 3062.9 3176.3
specific heat ratio, ¥y 1.25219 1.25966 1.27186
gas constant, R (J/kg/K) 355.9 365.7 381.2
Species Mass Fraction for Frozen Flow

N, 0.726652 0.724947 0.722695
0, 0.023287 0.029532 0.035884
Ar 0.012877 0.012877 0.012877
H 0.000701 0.001445 0.002840
h OH 0.022336 0.030736 0.040664
H, 0.005085 0.006512 0.008066
NO 0.015743 0.018386 0.024192
H,0 0.188322 0.164449 0.132859
o 0.004994 0.010106 0.019907




Table 3.3. Nozzle inlet conditions, SCHNOZ inputs
Internal Flow Parameter M,.= 10 M= 15 M= 20
Mach number 2.0582 3.4736 4.6791
static pressure, p (atm) 3.6867 1.9714 1.3217
static temperature, T (K) 2986.1 3062.9 3176.3
axial velocity, u (ft/s) 7789.1 13,537 19,052
radial velocity, v (ft/s) 0.0 0.0 0.0
Gas Mixture Parameters for Perfect Gas Flow

Ifmolecular weight, MW 23.3635 22.7327 21.8060

IIspecific heat ratio, vy 1.25219 1.25966 1.27186
Species Mole Fraction for Frozen and Finite-Rate Flow

H 0.016243 0.032577 0.061418
H, 0.058920 0.073441 0.087213
H,0 0.244184 0.207456 0.160752
N, 0.613426 0.595442 0.569337
0] 0.00729%91 0.014355 0.027121
OH 0.030678 0.041072 0.052118
0O, 0.017000 0.014681 0.024445
NO 0.012253 0.020976 0.017572
Table 3.4. Nozzle geometry specifications

" Circular arc attachment angle, 0y (deg) 20.6 38.0
Inlet height, h (inches) 1.0 1.0
Nozzle circular arc radius, r (inches) 1.0 1.0
Nozzle wall end, x/h 100.0 100.0
Nozzle wall end, y/h +25.0 +25.0

" Nozzle wall end angle, 6; (deg) +10.01 +8.04
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IV. Findings

4.1 Case Summary

Comparisons of the FDS and SCHNOZ codes were made
using several different combinations of nozzle geometries,
flight conditions, and thermodynamic models. Direct
comparisons of the FDS and SCHNOZ codes were made using an
inviscid frozen flow assumption for two different parabolic
nozzle contours, 20.6 deg and 38 deg, at three different
flight conditions, Mach = 10, 15, and 20, along a typical
hypersonic trajectory. An investigation of the SCHNOZ
implementation of viscosity terms was made by comparing
inviscid and viscous code results for the same nozzle
geometries and flight conditions. Comparisons of the frozen
flow and finite-rate chemistry models in the SCHNOZ code
were also made for the same combinations of nozzle
geometries and flight conditions. The nozzle geometries and
flight conditions were also used to compare perfect gas and
frozen flow FDS results. The comparisons are presented in
plots of static pressure and temperature distributions along
the nozzle wall, pressure contour plots, and tables of CPU

time.
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4.2 Grid Refinement

4.2.1 SCHNOZ

The SCHNOZ code proved to be very sensitive to grid
fineness in resolving the changing flowfield properties
along the nozzle wall (15:4-2). With a coarse grid, 51
points in the radial direction, the MacCormack algorithm was
unable to keep track of the rapidly changing flow properties
along the nozzle wall (15:4-2). A finer grid, 101 radial
points, was required to fully resolve the complex nozzle
flowfield. The SCHNOZ program utilizes equally spaced
radial grid intervals, Ay. The allowable axial marching
step, Ax, is limited by a combination of the Courant-
Friedrichs-Lewy (CFL) hyperbolic stability criterion and the

parabolic diffusion criterion for viscous flows (20:32).

4.2.2 FDS Grid Packing

Grid packing techniques are available in the FDS code
that can cluster gridlines toward the nozzle wall by
reducing the radial interval, Ay. The grid clustering is
dependent on the packing factor, which gives the fractional
position of a packed grid point (6:147). Figure 4.1 plots
the static pressure distribution along the nozzle wall for
the FDS perfect gas solution using a grid packing value of
1.10 and also for no grid packing. Figure 4.2 plots the
static pressure distribution along the nozzle wall for the

frozen flow FDS solution and the two different grid packing
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factors. Figures 4.1 and 4.2 show that grid clustering is
necessary to resolve the flowfield properties along the
nozzle wall without oscillatory behavior using the FDS code.
Computations were made with 101 radial grid points for both
the perfect gas and frozen flow thermodynamic models on the
38 deg parabolic nozzle contour at the Mach 15 flight
condition. The packing factors were used to cluster the
gridlines near the lower and upper walls to capture the
rapidly changing properties along these boundaries.

Table 4.1 presents a comparison of the number of
computational planes and CPU seconds required as a result of
different grid packing factors. The CPU seconds are for
computations using double precision floating point
arithmetic 64-bit SPARCstation 2 machines. Because of the
decrease in the radial interval, the grid packing causes a
corresponding decrease in the axial step size, Ax, to meet
the CFL stability criterion. No significant change in the
wall property distributions were seen with the increased
grid packing for a packing factor of 1.05, but a significant
increase in CPU time was required. Attempts to use 51
radial grid points and grid packing factors were
unsuccessful as the FDS code failed to compute a non-
oscillatory solution for these grids. The grid packing
factor of 1.10 provided a non-oscillatory solution with the
least inefficiency in terms of CPU time and was used

throughout the remainder of the study.
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4.3 FDS vs SCHNOZ Frozen Flow Comparisons

Figures 4.3 through 4.14 present a comparison between
the FDS and SCHNOZ inviscid, frozen flow solutions to the
steady Euler equations. The comparison between the two
solutions is presented in contour plots of static pressure
throughout the nozzle, and property distributions along the
nozzle wall. The contour plots and property distribution
plots illustrate the particular characteristics of the
propulsive nozzle flowfield and demonstrate the ability of
each computer program to capture the flow physics in the
hypersonic nozzle.

The static pressure contour plot for the FDS imperfect
gas solution with the 20.6 deg nozzle attachment angle is
illustrated in Figure 4.3 for the Mach 10 flight condition.
The static pressure contour plot for the SCHNOZ inviscid,
frozen flow solution for the same flight condition and
nozzle geometry is illustrated in Figure 4.4. Figures 4.3
and 4.4 show a good agreement between the two solution
methods for the general characterization of the nozzle
flowfield. Immediately downstream of the combustor exit the
flow undergoes a rapid expansion about the nozzle attachment
radius (item 1). The initial expansion is reflected off the
lower boundary and continually influences the flow
downstream in the nozzle. As the rate of change of the
slope of the nozzle wall decreases, a recompression is

generated in the flowfield (item 2). This recompression is
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reflected off the lower boundary and impinges on the nozzle
wall (item 3). The reflected compression is then carried
throughout the nozzle (item 4).

The calculated pressure distribution along the nozzle
wall for both the FDS and SCHNOZ frozen flow solutions is
presented in Figure 4.5 for the Mach 10 flight condition and
the 20.6 deg nozzle attachment angle. The rapidly expanding
flow around the nozzle attachment radius causes a sharp
initial decrease in pressure. The pressure rise downstream
at an X/h of between 5 and 10 results from the recompression
of the flow due to the change in wall curvature after the
parabolic wall attachment point. The drop in pressure
downstream of the recompression occurs due to the expanding
nozzle geometry and the reflection of the initial expansion.
The increase in presssure further downstream at X/h=50 is a
result of the reflected recompression wave as illustrated in
Figures 4.3 and 4.4. The expansion and pressure drop
gradually proceeds downstream of this slight recompression.

The temperature distribution along the nozzle wall for
the FDS and SCHNOZ frozen flow solutions for the Mach 10
flight condition and 20.6 deg nozzle geometry is illustrated
in Figure 4.6. The temperature distribution along the
nozzle wall essentially follows that of the pressure
distribution. The temperature decreases in regions of
expansion, and increases across the recompressions.

Figures 4.5 and 4.6 show that there is a slight
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difference in the pressure and temperature distributions
along the nozzle wall for the two different code solutions.
The recompression pressure peak is slightly larger in
magnitude and located slightly further downstream for the
SCHNOZ solutions. The pressure and temperature rise at the
reflected recompression, X/h=50, are more pronounced for the
SCHNOZ solution than the FDS solution. The difference
between the two results may be attributable to the
additional axial steps required in the FDS solution. Table
4.2 presents a comparison of the number of computational
planes and CPU seconds required for the two solutions. For
the Mach 10 flight condition and the 20.6 deg nozzle
attachmnet angle, the FDS solution requires almost 3 times
as many computational steps (1461) as the SCHNOZ solution
(562) . The increased number of computational steps results
from the grid packing utilized in the FDS solution and the
CFL stability criterion requirements. The increased number
of computational steps adds artificial damping to the
flowfield solution, thus diminishing the pressure and
temperature rise at the compression peaks. Despite these
slight differences in the pressure and temperature peaks,
there is a good overall agreement between the two code
results.

The static pressure contour plot for the FDS imperfect
gas solution with the 20.6 deg nozzle attachment angle is

illustrated in Figure 4.7 for the Mach 15 flight condition.
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Figure 4.8 presents the same information for the SCHNOZ
frozen flow solution. Figures 4.7 and 4.8 show a good
agreement between the two solution methods. The rapid
expansion about the nozzle attachment circular radius occurs
immediately downstream of the nozzle inlet (item 1). The
change in nozzle curvature causes a recompression (item 2)
which reflects off of the lower boundary (item 3) and is
carried downstream (item 4). The bending of the
recompression wave between items 2 and 3 is due to the
interactions between the recompression wave and the initial
nozzle expansion reflecting off the lower solid boundary.
Unlike Figures 4.3 and 4.4, the recompression in Figures 4.7
and 4.8 does not reflect off the nozzle wall. Due to the
increased velocity in the nozzle for the Mach 15 flight
condition, the recompression is carried downstream without
reflecting on the nozzle wall.

Figures 4.9 and 4.10 show the pressure and temperature
distributions, respectively, along the nozzle wall for the
FDS and SCHNOZ frozen flow solutions for the 20.6 deg nozzle
attachment angle at the Mach 15 flight condition. Figure
4.9 shows that the initial expansion is much more rapid for
the Mach 15 flight condition than the Mach 10 flight
condition shown in Figure 4.5. This occurs because of the
increased velocity of the Mach 15 combustor exit results.
The FDS frozen flow solution calculates a lower pressure and

temperature rise at the recompression. Again, the FDS
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solution is artificially dampened by the additional
computational steps. Table 4.2 shows that the FDS solution,
with the grid packing, uses over twice as many computational
steps as the SCHNOZ solution. Aside from the slight
differences at the recompression, the FDS and SCHNOZ
property distributions at the nozzle wall are nearly
identical for the Mach 15 flight condition and 20.6 deg
nozzle geometry.

The static pressure contour plot for the FDS imperfect
gas solution with the 20.6 deg nozzle attachment angle is
illustrated in Figure 4.11 for the Mach 20 flight condition.
The static pressure contour plot for the SCHNOZ, inviscid
frozen flow solution for the same flight condition and
nozzle geometry is illustrated in Figure 4.12. Figures 4.11
and 4.12 show a good agreement between the two solution
methods for the general characterization of the nozzle
flowfield. The initial nozzle expansion (item 1) is more
severe for the Mach 20 flight condition because of the
greater nozzle inlet velocity. The recompression due the
change in nozzle curvature (item 2) is quickly carried
downstream and coalesces into a shock wave within the nozzle
(item 3).

The calculated pressure distribution along the nozzle
wall for both the FDS and SCHNOZ frozen flow solutions is
presented in Figure 4.13 for the Mach 20 flight condition

and the 20.6 deg nozzle attachment angle. Figure 4.13 shows
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that the expansion is more rapid for the Mach 20 flight
condition than for the Mach 15 flight condition (Figure
4.9). The rapid expansion is enhanced by the increased
nozzle inlet velocity for the Mach 20 flight condition. The
FDS frozen flow solution calculates a slightly lower
pressure rise from the recompression than the SCHNOZ
solution due to the artificial damping induced by the FDS
grid packing.

The calculated pressure distribution along the nozzle
wall for both the FDS and SCHNOZ frozen flow solutions is
presented in Figure 4.14 for the Mach 10 flight condition
and the 38 deg nozzle attachment angle. Comparing Figure
4.14 to Figure 4.5, the pressure distribution plot for the
20.6 deg nozzle geometry, shows that the 38 deg attachment
angle causes a more rapid and severe expansion about the
nozzle attachment radius. The initial expansion about the
38 deg attachment radius achieves a pressure of
approximately one-third of that for the expansion about the
20.6 deg attachment radius. The increased attachmnet angle
allows for a greater nozzle expansion. Figure 4.14 shows
nearly a 10% difference in the FDS and SCHNOZ calculated
magnitudes of the recompression pressure rise. Table 4.2
shows that the FDS solution, with grid packing, uses over
twice as many computational steps as the SCHNOZ solution.
The artificial damping from the additional computational

steps is more pronounced for the 38 deg attachment angle
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nozzle, as compared to the 20.6 deg nozzle geometry, because
the recompression wave is stronger due to a greater change
in nozzle curvature downstream of the nozzle attachment
point.

Figures 4.3 through 4.14 show a generally good
agreement between the FDS and SCHNOZ frozen flow solutions
in capturing the physics of the hypersonic propulsive nozzle
flowfield. The maximum differnece in the pressure
distribution along the nozzle wall is approximately 10%,
occurring at the Mach 10 flight condition for the 38 deg
nozzle attachment angle. The greatest difference between
the two solutions, however, is in the required computational
time. Table 4.2 shows that the FDS imperfect gas method
requires CPU times between 6.4 and 9.9 times greater than

the SCHNOZ frozen flow solution.

4.4 Viscous Effects

The implementation of the viscosity terms in the SCHNOZ
code proved to be ineffective in truly capturing any viscous
effects. Figures 4.15 and 4.16 show the static pressure and
temperature distributions, respectively, along the nozzle
wall for the viscous and inviscid calculations of the 38 deg
parabolic nozzle contour at the Mach 10 flight condition.
There is no discernable difference between the property
distributions for the inviscid and viscous flow
calculations. This same pattern was seen in all other

nozzle geometries and flight conditions.
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Table 4.3 shows the difference in the CPU time and the
calculated nozzle thrust for the inviscid and viscous SCHNOZ
results. The differences in calculated nozzle wall thrusts
between the viscous and inviscid SCHNOZ solutions are less
than 0.1% for all flight conditions and geometries.

Compared to the inviscid solution, the viscous solution
required a factoral increase of up to 1.25 times the
computational time. Essentially, the implementation of the
viscous terms in the SCHNOZ code provided no additional
information to the flowfield solution at the expense of
additional CPU time. The ineffectiveness of the SCHNOZ code
to model the viscous effects is attributable to the slip
flow boundary condition employed to remove the subsonic

portion of the boundary layer.

4.5 Finite-Rate Chemistry Effects

Frozen and finite-rate thermodynamic models were
considered at each flight condition to study the effect of
chemistry on the calculated nozzle flowfield for both the
20.6 deg and 38 nozzle contours. Figures 4.17 and 4.18 show
the pressure and temperature distributions, respectively,
along the nozzle wall for the 38 deg parabolic nozzle
contour for the Mach 10 flight condition. Figure 4.17 shows
that there is a slight difference in the pressure
distribution, as the frozen flow calculates a smaller

pressure rise downstream of the initial expansion compared
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to the finite-rate chemistry results. The difference in the
pressure distribution results in a difference in the
calculated nozzle thrust. Table 4.4 shows the increase in
CPU time and the percent change in the calculated thrust for
the finite-rate chemistry runs compared to the frozen flow
results. The calculated nozzle wall thrust is greater for
the finite-rate chemistry SCHNOZ solutions than the frozen
flow solution. The increase in the calculated nozzle wall
thrust is due to the increase in the pressure distribution
along the nozzle wall for the finite-rate chemistry
solutions. The percent change in nozzle thrust is a maximum
of 4% at the Mach 20 flight condition and is independent of
the two nozzle geometries considered. The solution of the
viscous PNS equations including finite-rate chemistry
effects, required CPU run times approximately 2.5 times
greater than the inviscid SCHNOZ frozen flow computations.
The difference in the temperature distribution is more
pronounced than the difference in pressure distribution
between the two thermodynamic models. Figure 4.18 shows the
increased temperature distribution along the nozzle wall of
the finite-rate chemistry solution compared to the frozen
flow solution for the Mach 10 flight condition and the 38
degree parabolic nozzle contour. The finite-rate chemistry
model allows for dissociation and chemical reactions
throughout the nozzle flowfield. As shown in Table 4.5, the

mole fraction of the combustion products, H;0, increases
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from the nozzle inlet to exit. The increase in H30
indicates that the combustion process is continuing as the
flow expands through the nozzle. The combustion process
releases energy into the flowfield. This additional energy
results in a higher temperature for the finite-rate

chemistry solution than the frozen flow solution.

4.6 FDS Perfect Gas Trends

4.6.1 FDS Perfect Gas vs. Imperfect Gas

Figures 4.19 and 4.20 present the static pressure and
temperature distributions, respectively, along the nozzle
wall for the FDS imperfect and perfect gas solutions to the
38 deg parabolic nozzle contour at the Mach 10 flight
condition. The perfect gas calculates both a higher
pressure and temperature distribution along the nozzle wall.
The calculation of the pressure using the linearized-
approximate FDS method was virtually the same for both gas
models considered, see Appendix C. However, there is a
greater difference in the calculation of temperature because
of the variation of the ratio of specific heats, y, allowed
in the imperfect gas model. The variation of y with
temperature for the imperfect gas and the increased modes of
molecular energy allow the imperfect gas to more equally
distribute the energy conversion across the recompression
wave. The perfect gas absorbs a greater percentage of the

energy change into the translational mode of energy, thus
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resulting in an increase in temperature.

The addition of the imperfect gas model to the FDS
algorithm causes a significant increase in computational
time. Table 4.6 shows the increase in CPU time and the
percent change in the calculated thrust for the imperfect
gas FDS results compared to the perfect gas FDS results.

CPU run times were up to 20 times greater for the imperfect
gas model than the perfect gas FDS. The added run time is
caused by the additional iterations required in the solution
of the Riemann problem downstream of a discontinuity and the

decoding of the Riemann flux vector components.

4.6.2 FDS Perfect Gas vs. SCHNOZ Finite-Rate Chem

It is interesting to note that the FDS perfect gas
assumption results more closely follow the finite-rate
chemistry results of the SCHNOZ code than do frozen flow
results. Figures 4.17 and 4.18 show that the SCHNOZ finite-
rate chemistry model solution calculates slightly higher
pressure and temperature distributions than the SCHNOZ
frozen flow solution. The higher pressure and temperature
distributions occur because of the added energy to the flow
from the combustion process continuing throughout the
nozzle. Similarly, Figures 4.19 and 4.20 show that the
perfect gas FDS solution calculates higher pressure and
temperature distributions than the imperfect gas FDS. The

higher pressure and temperature distributions occur because

4-14




of the increase in the energy absorbed by the translational
mode of energy downstream of the flowfield discontinuities.

An adhoc comparison of the FDS perfect gas solutions
and SCHNOZ finite-rate chemistry model solutions is
presented in Figures 4.21 through 4.24. Figure 4.21
illustrates the pressure distribution along the nozzle wall
for the SCHNOZ finite-rate chemistry model solution and the
FDS perfect gas solution for the 20.6 deg nozzle geometry at
the Mach 10 flight condition. Figure 4.21 shows a good
agreement between the two calculated pressure distributions
alony the nozzle wall. Figure 4.22 shows the temperature
distribution along the nozzle wall for the same flight
condition and geometry. Except for the differences at the
recompression peaks, the FDS perfect gas temperature
distribution is offset by a constant amount from the
temperature distribution determined from the SCHNOZ finite-
rate chemistry model.

Figure 4.23 shows a relatively constant offset in the
FDS perfect gas temperature distribution and the SCHNOZ
finite-rate chemistry results for the Mach 15 flight
condition and the 20.6 deg nozzle geometr:. This same
constant offset is evident in the two calculated temperature
distributions for the 20.6 deg nozzle geometry at the Mach
20 flight condition illustrated in Figure 24. The
artificial damping because of the grid packing used in the

FDS perfect gas solution contributes to difference in the

4-15




temperature distributions at the recompression peaks for
Figures 4.22 through 4.24.

Table 4.7 presents the CPU time comparison for the FDS
perfect gas and SCHNOZ finite-rate chemistry solutions. The
perfect gas FDS algorithm runs 6 to 8 times faster than the
SCHNOZ finite-rate chemistry runs. The constant offset in
the temperature distributions in Figures 4.22-4.24 indicates
that a slight change in the Yy value used for the FDS perfect
gas solution could yield a more accurate temperature
distribution. The choice of a perfect gas y that is
representative of the actual flow physics would allow the
perfect gas FDS solution to provide valuable information on
the flow phenomena trends exhibited in the nozzle with a

tremendous savings in computational time.




Table 4.1. Comparison of grid packing efficiencies, FDS
perfect gas solutions, M=15, 38 deg nozzle.
Packing fraction Axial Steps CPU time (sec)
None 387 34.1
1.10 806 74.2
1.05 1291 119.6
Table 4.2. Computational planes and CPU time (seconds)

comparison for the SCHNOZ and FDS inviscid
frozen flow solutions.

Flight condition Axial Axial CPU CPU
Steps Steps Time Time
FDS SCHNO2 FDS SCHNOZ

M=10, 20.6 nozzle 1461 562 2214.8 224.8
M=15, 20.6 nozzle 934 443 1767.1 187.2
M=20, 20.6 nozzle 691 403 1111.6 173.2
M=10, 38 nozzle 1258 561 2105.2 224.3
M=15, 38 nozzle 788 480 1467.1 200.4
Table 4.3. CPU time and calculated thrust comparisons of

SCHNOZ viscous vs. inviscid solutions, frozen

flow, 38 deg parabolic nozzle contour.

Flight condition

factoral increase
in CPU time vs.
inviscid solution

percent change in
nozzle thrust vs.
inviscid solution

Mach 10 1.14 0.00
Mach 15 1.18 0.08
_Mach 20 1.25 0.02




Table 4.4. CPU time and calculated thrust comparisons of
SCHNOZ finite-rate chemistry vs. frozen
solutions, 38 deg parabolic nozzle contour.

||Flight condition

factoral increase
in CPU time vs.
frozen flow

percent increase
in nozzle thrust
vs. frozen flow

Mach 10 2.65 3.89
Mach 15 2.47 3.33
Mach 20 2.49 4.06

Table 4.5. Combustion products, H;0, mole fraction at
nozzle inlet and exit for SCHNOZ finite-rate
chemistry solutions.

Flight condition

inlet Hy0 mole

exit H30 mole

fractions fractions
M=10, 20.6 nozzle 0.2442 0.2808
M=15, 20.6 nozzle 0.2075 0.2436
M=20, 20.6 nozzle 0.1608 0.1982

Table 4.6. CPU time and calculated thrust comparisons of
FDS imperfect gas vs. perfect gas solutions,
20.6 deg parabolic nozzle contour.

Flight condition

factoral increase
in CPU time vs.
perfect gas

percent change in
nozzle thrust vs.
perfect gas

Mach 10 15.79 -6.70
Mach 15 19.94 =1.40
Mach 20 17.53 -1.40




Table 4.7. CPU time (seconds) comparison for the FDS
perfect gas and SCHNOZ finite-rate chemistry

solutions.

Flight condition FDS SCHNO2Z factoral

perfect finite increase

gas rate chem in time

vs. FDS
M=10, 20.6 nozzle 140.2 702.4 5.01
M=15, 20.6 nozzle 88.6 553.2 6.24
M=20, 20.6 nozzle 63.4 496.8 7.84
||M=10, 38 nozzle 121.6 679.0 5.58
||M=15, 38 nozzle 75.1 583.7 7.77
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Figure 4.1. Static pressure distribution along nozzle wall
for different grid packing, FDS solution, M=15,
perfect gas, 38 deg parabolic nozzle.
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Figure 4.2. Static pressure distribution along nozzle wall
for different grid packing, FDS solution, M=15,
frozen flow, 38 deg parabolic nozzle.
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Figure 4.3.

Static pressure contours (atm), FDS frozen flow
solution, M=10, 20.6 deg parabolic nozzle

contour.

Figure 4.4.

Static pressure contours (atm), SCHNOZ inviscid
frozen flow solution, M=10, 20.6 deg parabolic
nozzle contour.
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Figure 4.5.

Static pressure distribution along nozzle wall,
FDS and SCHNOZ inviscid solutions, frozen flow,
M=10, 20.6 deg parabolic nozzle contour.

4000

2000

Temperature (K)

1 —— SCHNOZ

{ —— DS

\

A \
\\\\\‘
\M*--~

.\ ] I S el j
0 25 50 75 100

X/h

Figure 4.6.

Static temperature distribution along nozzle
wall, FDS and SCHNOZ inviscid solutions, frozen
flow, M=10, 20.6 deg parabolic nozzle contour.
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Figure 4.7.

Static pressure contours (atm), FDS frozen flow

solution, M=15, 20.6 deg parabolic nozzle
contour.
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Figure 4.8.

Static pressure contours (atm), SCHNOZ inviscid

frozen flow solution, M=15, 20.6 deg parabolic
nozzle contour.
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Figure 4.9. Static pressure distribution along nozzle wall,
FDS and SCHNOZ inviscid solutions, frozen flow,
M=15, 20.6 deg parabolic nozzle contour.
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Figure 4.10. Static temperature distribution along nozzle
wall, FDS and SCHNOZ inviscid solutions, frozen
flow, M=15, 20.6 deg parabolic nozzle contour.
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Figure 4.11. Static pressure contours (atm), FDS frozen
flow solution, M=20, 20.6 deg parabolic nozzle
contour.

Figure 4.12. Static pressure contours (atm), SCHNOZ
inviscid frozen flow solution, M=20, 20.6 deg
parabolic nozzle contour.

4-25




—— SCHNOZ
1.0F
- — FDS
—_ 08|
E
e
g
= 06 b
)
it
a
04f
el /\\
0.0..-l....l....l....l....l
Q 25 50 75 100

X/n

Figure 4.13. Static pressure distribution along nozzle wall,
FDS and SCHNOZ inviscid solutions, frozen flow,
M=20, 20.6 deg parabolic nozzle contour.
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Figure 4.14. Static pressure distribution along nozzle wall,
FDS and SCHNOZ inviscid solutions, trozen flow,
M=10, 38 deg parabolic nozzle contour.
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Figure 4.15. Static pressure distribution along nozzle
wall, SCHNOZ viscous and inviscid solutions,
frozen flow, M=10, 38 deg parabolic nozzle.
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Figure 4.16. Static temperature distribution along nozzle
wall, SCHNOZ viscous and inviscid solutions,
frozen flow, M=10, 38 deg parabolic nozzle.
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Figure 4.17. Static pressure distribution along nozzle
wall, SCHNOZ frozen and finite rate chemistry
viscous solutions, M=10, 38 deg nozzle.
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Figure 4.18. Static temperature distribution along nozzle
wall, SCHNOZ frozen and finite rate chemistry
viscous solutions, M=10, 38 deg nozzle.
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Figure 4.19. Static pressure distribution along nozzle
wall, FDS perfect and imperfect gas solutions,
M=10, 38 deg parabolic nozzle contour.
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Figure 4.20. Static temperature distribution along nozzle
wall, FDS perfect and imperfect gas solutions,
M=15, 38 deqg parabolic nozzle contour.
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Figure 4.21. Static pressure distribution along nozzle
wall, SCHNOZ finite-rate chemistry and FDS
perfect gas solutions, M=10, 20.6 deg nozzle.
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Figure 4.22. Static temperature distribution along nozzle
wall, SCHNOZ finite-rate chemistry and FDS
perfect gas solutions, M=10, 20.6 deg nozzle.
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Figure 4.23. Static temperature distribution along nozzle
wall, SCHNOZ finite-rate chemistry and FDS
perfect gas solutions, M=15, 20.6 deg nozzle.
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Figure 4.24. Static temperature distribution along nozzle
wall, SCHNOZ finite-rate chemistry and FDS
perfect gas solutions, M=20, 20.6 deg nozzle.
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V. Conclusions/Recommendations

5.1 Conclusions

The overall comparison of the two computational
methodologies revealed that currently the SCHNOZ code is
more efficient than the FDS frozen flow code for analyzing a
given nozzle inlet profile and geometry. The SCHNOZ and FDS
code demonstrate a good agreement in modeling the flow
physics in the hypersonic nozzle. The inclusion of
viscosity, turbulence, and finite rate chemistry models
should make the SCHNOZ code more accurate. However, the
implementation of the solid wall slip boundary condition to
remove the subsonic portion of the viscous boundary layer
fails to truly model the effects of viscosity in the nozzle
flowfield. The chemistry effects in the nozzle flowfield
have a small (less than 5%) effect on the overall nozzle
thrust. However, even these small thrust differences are
significant in the optimized design of a NASP-type vehicle
and the inclusion of finite rate chemistry effects should be
incorporated into the computational solution.

The FDS code utilizing the perfect gas assumption is
useful and efficient in optimizing a nozzle or cowl geometry
for a given inlet condition. The perfect gas FDS results
show the proper trends in flow phenomena and flowfield
properties, and provide a good ballpark design to analyze by

a more accurate method. The added CPU time of the more
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accurate FDS frozen flow, compared to the perfect gas, is
attributable to the additional iterations required in the
solution of the Riemann problem and the flux vector decode.
This added CPU time greatly reduces the efficiency of the
FDS method. An improved iteration scheme for the frozen gas
thermodynamic model for the FDS could should markedly

improve its performance in terms of CPU time.

5.2 Recommendations

According to the SCHNOZ operator’s manual (20), a new
version of the SCHNOZ code was to be developed that includes
a viscous sublayer model and an option for equilibrium
chemistry. Future computations of the nozzle flowfield
should be run with this version of the SCHNOZ code or a
different PNS code that includes the viscous sublayer model
to better capture the viscous flow effects. With proper
consideration of the viscous effects on the solution, a
study to determine whether the PNS equations are necessary
to model the flow physics would prove beneficial.

Continual improvements in computational methodologies
and computational capabilities need to be investigated and
analyzed to meet the demanding challenges of the hypersonic
propulsive nozzle environment. The current version of the
SCHNOZ program is not optimized for use on a supercomputer,
and the FDS code is not vectorizable because of the nature

of the solution to the Riemann problem. Future studies
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should be made into the efficiency, in terms of
computational time and cost, for a vectorizable PNS code run
on a supercomputer.

The true accuracy of the computer codes can only be
determined by a comparison to exact solutions. 1In lieu of
unlikely actual flight test data, an unclassified
experimental analysis of a simple nozzle geometry should be
undertaken to validate the findings and trends of
computational runs. Also, computational runs using actual
combustor exit data would prove to be of merit in comparison

to previously assumed or derived nozzle inlet profiles.
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Appendix A: Governing Equations

A.1 Parabolized Navier-Stokes (PNS) Equations

The set of PNS equations implemented in the SCHNOZ code
were derived from the full Navier-Stokes equations using
time-averaging of density, pressure, and viscous stresses
and mass-averaging of the remaining variables (15:2-1).
Using Reynold’s averaging and ignoring unsteady terms and
streamwise derivatives of viscous stress terms, the
turbulent Navier-Stokes equations were parabolized (4:907).
Ignoring turbulent stress terms in the normal momentum
equation and diffusion terms in the energy equation, because
of an assumed unity Lewis number (4:907), the resulting

planar PNS equations are obtained:

Continuity:
d(pu) d(pv) _
o + 3y 0 (A.1)
X-Momentum:
d(p + pu? a(pUV) - A.2
ox * oy aY(_ ) ( )
Y-Momentum:
d(puv) 6(p+pV2) - (A.
ox * dy ay(- ) (8-3)




Total Enthalpy:

g g - SENRSL) - HES) @0
Full details on the derivation of these equations are
available in the work of Sisilian (14) and their application
to the SCHNOZ code is presented by Dash (20).

For chemically reacting viscous flows a finite-rate
chemistry model is used, and an additional equation is added
to the PNS equation set to account for the various species

continuity:

a(puczi)x+ d(pve;) 6 = 9 jl_aai (A.5)
F] ay i Oy\pr dy
where the subscript i represents the individual species

considered.

A.2 Turbulence Model

Due to computer limitations and the small space scales
of turbulent motion, the effects of turbulent disspation and
diffusion are only computationally feasible using turbulence
models (9:659). The SCHNOZ program contains two turbulence
models, the ke and kW high Reynolds number versions. The
turbulence model used in this study is the common two-
equation ke eddy viscosity version which models the
turbulent kinetic energy, k, and energy dissipation, €. The

turbulent viscosity, pu,, is determined from:
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1
= kZ
Be = Cupk 20 = C“p-? (A.6)
where the length scale parameter used is the turbulence
energy dissipation rate, € (5:507). The energy dissipation
rate is related to k and the turbulent length scale, ¢,
through the following relation (15:10):

k3/2

A.7
7 (A.7)

€ =

The parabolized form of the turbulence modelling equations
are developed from the full Navier-Stokes equations for the
production, transport, and dissipation of k and € with the
omission of all axial derivatives (5:507). For planar flow

the turbulence equations are then given by:

-a%(puk) + (pvk) -9 (h ) [p au - pe] (A.8)

9y \ o, Oy
and :
3 Be Oe du\? _ €
(pue) + 3% (pve) ay( . ay] + [Clp 73;7) zpe]-]E (A.9)

The constants used in the parabolized turbulence modelling

equations are (15:10):

C, = 1.43 o, = 1.0
C, = 1.92 o, = 1.3
c, = 0.09

The ke model is developed from incompressible




assumptions and overestimates mixing rates for high Mach
number flows, such as those in a hypersonic nozzle (5:507).
Therefore, a compressibility correction, K(M,), is employed
in the SCHNOZ code to arrive at a corrected value of the

turbulent viscosity given by:
k2
B, = K(M) Cmp—e (A.10)

where M, is the characteristic Mach number of the turbulence
(5:507). This characteristic Mach number of the turbulence
is found from:
M = _Iq“ax (A.11)
nax
where k., is the maximum value of k at each axial location
and a _,,, is the local speed of sound at each k,,, (5:507).

The values of K(M,) are determined from comparison with

experimental data and are shown in Figure A.1 (5:507).

A.3 Euler Equations

The Euler equations are the zero viscosity and zero
conductivity limits of the Navier-Stokes equations (9:659).
The effects of viscosity and the conduction of heat are not
included in the Euler equations. The Euler equations as

utilized in the FDS computer program of Doty are:




Continuity:

d(pu) , d(pv)

S 3 0 (A.12)
X-Momentum:
d(p+pu?) , d(pvu) _ , (A.13)
ox oy
Y-Momentum:
d(puv) , d(p+pv?) _ (A.14)
ox oy
Total Energy:
dlu(petp)] , dlvipetp)]l _ , (A.15)
ox oy

Traditionally, solutions of the Euler equations require
significantly less computational time than comparable PNS

equation solutions (2:236).




1.0 -
8 -
R
E
S 4
|x
02—
0 \ ] 1 ]
0 .1 2 .3 4
" max
Figure A.1.

Compressibility correction factor for ke
turbulence model (20:11)




Appendix B: Thermodynamic Model

B.1 Perfect Gas

The thermodynamic model employed greatly influences the
determination of flow properties within the hypersonic
nozzle. The complexity of the thermodynamic models depend
on the degree to which the model actually captures the true
physics of the flow (13:51). The simplest model is the
perfect gas. A calorically perfect gas model assumes no
intermolecular forces and constant specific heats, c, and Cps
resulting in a constant specific heat ratio, y. The perfect

gas obeys the thermal equation of state (1:381):

D= pRT (B.1)

where R is the gas constant determined by the molecular

weight, MW, of the gas and the universal gas constant, R,:

R = R_;nwgr (B.2)

A perfect gas assumes no change in the molecular composition
of the gas. Hence, R remains constant since there is no
mechanism to change the MW of the gas. The enthalpy and
internal energy of a calorically perfect gas are functions

only of temperature (1:388).




h =h(T) = c,T (B.3)
a=0(T) =c,T (B.4)

The total internal energy for a calorically perfect gas is

given by:

pe = ¥?1 +-%p(u24-vz) (B.5)

The calorically perfect gas assumption is the most
widely used assumption in flow analyses. However, the
calorically perfect gas assumption breaks down when high
temperatures are encountered within the flowfield. The
perfect gas does not account for the internal structure of
the molecule, nor does it allow for the dissociation of
gaseous molecules with increasing temperature. These
shortcomings are adressed by the calorically imperfect gas

model and the finite-rate chemistry model, respectively.

B.2 CcCalorically Imperfect Gas
The next step in complexity is the calorically

imperfect gas. The calorically imperfect gas still assumes
that intermolecular forces are negligible and obeys the
thermal equation of state, Eq. (B.1l). The basic difference
between the calorically imperfect gas and perfect gas is in
the recognition of the proper internal structure of the
gaseous molecule and the modes of internal energy which may

be excited. The differences in the two assumptions is
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illustrated by considering air as a diatomic gas and
ignoring the relatively small contributions of the
electronic mode of energy (18:136).

In general the specific internal energy, now denoted by
e and not a, for a gas is additive and represented by

(18:128):

etotal = etrans + s ; eintern (B°6)
intern

where e, represents the internal modes of energy

available. For a diatomic gas such as air, the
translational, rotational, and vibrational modes of energy
are available, even at relatively moderate temperatures
(18:222). Using a statistical mechanics derivation Vincenti
and Kruger provide the following expressions for the
translational, rotational, and vibrational internal modes of

energy for a diatomic gas (18:133-135):

Ctrans = %RT (B.7)

€0t = RT (B.8)
RO,

eVib - eev/T _ 1 (BQ 9)

where 6, is the characteristic temperature for vibration.
The perfect gas assumption allows only for the translational
and rotational internal modes of energy. The specific

internal energy for a perfect gas is then given by:
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+e , = 2RT (B.10)

epozfoct = etzans rot 2

The calorically imperfect gas, accounting for the internal

energy mode of vibration is:

_ _ 5
€total = ©€trans ¥ €rot * Cvip T ST+ €vi (B.11)

[\

Comparing Egs. (B.10) and (B.11) shows that the energy of
gaseous molecules is spread over more modes of energy for a
calorically imperfect gas than for the perfect gas. This
difference influences the determination of flow properties
downstream of discontinuities. For perfect gas flow across
a shock wave, the kinetic energy of the flow in front of the
shock is converted to translational and rotational energy
downstream of the shock. For the calorically imperfect gas,
some of this kinetic energy conversion may be absorbed by
the vibrational mode of energy, thus decreasing the amount
of energy absorbed by the rotaional and translational modes.
Since temperature is a direct measurement of kinetic
(translational) energy, the increased energy absorbed in the
translational mode of the perfect gas, compared to the
calorically imperfect gas, causes the perfect gas model to

overpredict the temperature downstream of the shock (1:510).




B.3 cComplex Chemical Mixtures

The combustion products of a hydrogen-fueled air-
breathing SCRAMjet engine are a complex mixture of gaseous
species consisting largely of water and nitrogen. The
specific heat for a mixture of n gaseous species is given by

(1:387):

n
G = Y.Cicp, (B.12)

where C, is the mass fraction of the species. The specific

heat of the species, c,, for a mixture of thermally perfect

pi’
gases is dependent upon the temperature of the mixture
(1:388). Using curve fitted JANAF thermochemical data, the
least squares coefficients of specific heats, enthalpy, and
entropy parameters may be obtained as functions of
temperature. In terms of the least squares coefficients, c

P

is written as (13:56):
Cp, = (@ + bT + cT? + dT? + eT*)R,,.C; (B.13)
Enthalpy for a thermally perfect gas mixture is given
by (1:397):
T
h=h; + JcpdT (B.14)
(]

Substituting Eq. (B.13) into Eq. (B.14) yields the least

squares coefficients form of enthalpy for species i (13:57):

h
-§T2 + S73 4 g + £T%) Rgy + —22]C;  (B.15)

hi=[<h0+aT+ 3 as MW




where h;_,; is the enthalpy of the species at the reference
temperature of 298 K.
Entropy for a thermally perfect gas is given by

(1:396):

= darT p
s = |c,— - Rln
’[o P Do (B.16)
= ¢ - RIn-2

Again, substituting Eg. (B.13) into the integral portion of
Eq. (B.16) yields the least squares coefficient form of the

species entropy parameter, ¢;, for a species i (13:57):

b

;= (b +aT+ 272+ 72+ g)Rg“ci (B.17)

The total specific heat, enthalpy, and entropy of the
thermally perfect mixture is then found from the summation
of the individual species value. As implemented in the
thermally perfect gas model (calorically imperfect), the
chemical composition of the mixture remains constant, or

frozen, throughout the nozzle.

B.4 Finite-Rate Chemically Reacting Flow

The finite-rate chemistry kinetics model accounts for a
reacting mixture of gaseous species and the dissociation of
gaseous molecules at high temperatures. Dissociation alters
the molecular composition and molecular weight of the

gaseous mixture and occurs around 2000 K for O,, and begins



at 4000 K for N, (1:451). The change in molecular
composition and molecular weight alters the properties of
the flow and the determination of flowfield properties
downstream of discontinuities.

For a chemically reacting mixture of n different
gaseous species, X;, the general chemical reaction equation

is:
& / ke /"
viX; = fjvixi (B.18)

where v,/ and »," are the stochiometric coefficients of the
reactants and products, respectively. The stochiometric
coefficients are positive for products and negative for
reactants. The constants k; and k, are the forward and
reverse reaction rate constants. The net rate of production
of a given species i is given by (1:493):

dix,]
dt

- (vi-vi ke TIx ™ - ke, TIEx (B.19)

where [X;] denotes the concentration of species i in moles
per unit volume. The rate constants, k; and k,, are related

by the equilbrium constant based on concentration, K., such

cl

that (1:493):

(B.20)

[~

k
_f=K
kb

where the concentration based equilibrium constant, K, can

be found from the equilibrium constant based on partial
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pressures, K,, using the equation:

- 1\ B.21
K, (RunivT) K, ( )

The equilibrium constant based on partial pressures, K,, for
a given chemical reaction is determined from the Gibbs free

energy and temperature (1:406):

K (T) = 2% /RusT (B.22)

In Eq. (B.22) AG’™! is the Gibbs free energy of the products
minus the Gibbs free energy of the reactants for a given
chemical reaction with all species evaluated at a pressure
of one atmosphere and a specified reference temperature
(1:402-406). As implemented in the SCHNOZ computer program,
values of G*°! are determined from a thermodynamic datafile
in the computer code.

The species concentration, [X;], in Eq. (B.19) can also

be written as

[X;] = pF; (B.23)

1

where p is the density of the mixture and F; is the mass

fraction of species i divided by its molecular weight:

(B.24)

The net production rate equation, Eq. (B.19), can then be

written as




;VI /4
= k (VI-v)|[I(pF " - (—R“&f—)—H(pFi)“ (B.25)
1 P 1

. . dlx]
T

The chemical reactions implemented in the finite-rate

chemistry model of the SCHNOZ code for this study are:

H +0, - OH +0
H, + 0 - OH +H
OH + OH « HO+O0
H, +OH =« HO+O0 (B.26)
O +H +Mw OH +M

H+Mw H +M

H +OH+Mw= HO+M
O +0 +M= O, +M
For the reactions considered in Eq. (B.26) M is a third body

which can be a molecule of any species present in the
mixture. The finite-rate chemistry model in the SCHNOZ code
assumes that all third bodies have equal efficiencies in
contributing to the reactions (15:2-9). The rate of
production of a species i for the system is then the sum of
the rates of production of species i for the individual

reactions considered (1:496-497).




Appendix C: Flux-Difference-Splitting

C.1 Introduction

The flux-difference-splitting (FDS) method is a
technique capable of capturing complicated flows with strong
property gradients. The FDS method requires the solution of
the Riemann problem at a given axial location to advance
downstream in a marching fashion. FDS takes advantage of
the wave-like nature of the Riemann problem to split the
flow vector fluxes along preffered paths of propagation
(6:153). Full details on the solution of the Riemann
problem for planar supersonic flow assuming a thermally and
calorically perfect gas are provided in reference (6). This
solution procedure was modified for a calorically imperfect
gas assumption in reference (13). The FDS method is

independent of the Riemann problem solution method.

C.2 The Riemann Problem

The Riemann problem is represented in Figure C.1.
Godunov proposed that the general flow property , ¥,
distribution can be modelled as a series of uniform flow
regions with a discontinuity occuring half-way between the
nodes of interest (6:11). In Figure C.1 the solid line -
represents the arbitrary ¥ distribution and the dashed line

represents the Godunov regions of uniform flow.




The collapse of the discontinuity to the midpoint,
j+1/2, results in waves that are propagated along
characteristics based on the wave angle (6:9) as depicted in
Figure C.2. Waves (1) and (3) can be any combination of
expansion or compression waves, and wave (2) is a contact
surface that seperates regions (2) and (4). Flow property
discontinuities are present across the waves, however the
contact surface, wave (2), cannot support a pressure nor
flow angle discontinuity (6:163). The values of flow
properties in regions (0) and (6) are known from the initial

values or the solution of the previous Riemann problem.

C.3 Solution of the Riemann Problem

The solution of the Riemann problem is the
determination of the primitive flow variables, p, p, u, and
v, in regions (2) and (4) as shown in Figure C.2. Doty (6)
details three different methods that may be used to solve
the Riemann problem. The first is an exact solution
procedure where iterations of non-linear, coupled equations
are required for a non-isentropic compression wave and
iterations of the non-linear Prandtl-Meyer relations are
necessary for simple expansions. Further iterations are
required to match the pressure in regions (2) and (4) to
satisfy the contact surface boundary. The second method is
an exact-approximate solution. This is similar to the exact

method but treats compression waves as isentropic. The
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isentropic Prandtl-Meyer relations may then be used to solve
for flow variables across any wave. The non-linear Prandtl-
Meyer relations still require iterative solution techniques
as we!ll as further iterations of the entire solution to meet
the contact surface pressure requirements. The third method
is the linearized-approximate solution and is used
exclusively in this study.

The linearized-approximate solution treats all waves as
isentropic expansions and compressions which may be solved
by the Prandtl-Meyer relations. Furthermore, the Prandtl-
Meyer relations are linearized to allow for a closed form
algeabraic equation requiring no iterations. The
linearized-approximate solution to the Riemann problem is
dependent on the assumed thermodynamic model. The
determination of the primitive variables in region (2) and
(4) is more complicated for the calorically imperfect gas
and requires an iterative technique for the solution of

temperature .

C.3.1 Linearized-Approximate Solution, Perfect Gas
For isentropic, planar, steady flow, the differential
form of the compatibilty relations, valid along Mach lines

is (6:165):

VMZ-1 dp + pV3dO = 0 (c.1)
where the (+) sign refers to positive characteristics and
the (-) sign refers to negative characteristics. Using the
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definitions of velocity magnitude, V = u? + v?, and flow
angle, # = atan(v/u), and the following relationship, p =

vp/a?, Eq. (C.1) can be rearranged to yield:

dp , (yu/a®) jiu/u) = o0 (c.2)
p VME-1

Introducing the following definitions:

z = {yut/a’) (c.3)
MZ-1

¢ =v/u (C.4)

dlin(p)] = %’ (c.s)

a more efficient form of the compatibility equations may be

written as:

dlln(p)] £ (2)do = 0 (C.6)
Linearizing Egq. (C.6) yields:

A[ln(p)] £ (2)Ac =0 (C.7)

Referring to Figure C.2, a positive wave, wave (3), is
required to pass information from region (0) to region (2).
Using the (+) sign for the postive wave from Eg. (C.7) and
using the regions (0) and (2) in the difference operator

gives:

([In(p)], - [In(p)],) + (z,) (0,-0,) =0 (C.8)




Rearranging Eq. (C.8) yields:
[In(p)], + (z5)0, = [In(p)], +(Z,) g (C.9)
Similarly, a negative wave is required to pass information
from req}on (6) to (4) and from Eq. (C.7) is expressed by:
[In(p)]l, - (2) 0, = [In(p)]¢ -(24) 0 (C.10)

The pressure and flow angle (or slope, o) are required to

match across the contact surface. Thus:

04 = 02 (0011)

p‘ = pz (0.12)

Equations (C.9), (C.10), (C.11), and (C.12) now constitute a
set of four equations with four unknowns. After
substitution and rearranging the four equations, an
expression for the solution of the flow angle in region (4),

0,, is obtained in terms of known properties in regions (0)

and (6):
. [ln(p)lo-[lr:(zfl;:)(zs)os'f(zo)oo (C.13)
Equation (C.10) is then solved for p,:
p, = exp([ln(p)l, + z,(0,-0¢)) (C.14)




The density and speed of sound in regions (2) and (4) are

determined from isentropic ratios across waves (1) and (3):

P2 =[£érJY (C.15)
Po Dy

a, = [YP./P,]*/? (c.16)
Ps _ éﬁ]”y (C.17)
Pe Ds

a, = [Yp4/P4]1/2 (C.18)

Conservation of stagnation enthalpy across waves (1)
and (3) is used to obtain the velocity components in regions
(2) and (4). Recall from Appendix B that for a calorically

perfect gas h = C,T. Thus, across wave (3):

Y-1,.2
hta = CPth = T‘[1+ 2 M] =1

(C.19)
bc‘ CPTts T6[1 + .Y_;lM:]

Equation (C.19) can be solved explicitly for M,; and the
velocity components, in terms of the flow slope, o,, are

(13:62) :
u, = M,a,cos[tan(qg,)] (C.20)

v, = M,a,sin[tan™(0,)] (C.21)

A similar procedure is used to find the primitive flow

variables in region (2).




C.3.2 Linearized-Approximate Solution, Imperfect Gas

The determination of the pressure in region (4), Eq.
(C.14) remains valid for a calorically imperfect gas. To
determine the remaining primitive flow variables a relation
is needed that does not rely on a calorically perfect form
of the conservation of stagnation enthalpy.

As outlined in reference (13), the determination of
temperature uses relations that take advantage of the
assumed isentropic nature of the flow. For a thermally
perfect gas, the differential quantity of entropy in a

system is (1:397):

- ¢, 9T _ pdp
ds = ¢, 7 D (C.22)
Integration yields:
= dT p . D
s=|C,—== ~RI1lnE = - R 1n-£ (C.23)
rfo"T D, ¢ Dy

where the entropy parameter, ¢, is defined as (13:63):
T
= dT
= [ 2= C.24
¢ = e (C.24)

Substituting Eq. (B.13) from Appendix B for the specific

heat, C,, for a mixture of gases, into Eq. (C.24) yields:

2 3 4
¢ = (d’o + alnT + bT + Cg + d:; + eZ' )R (C.25)

A change in entropy across wave (3) is found from Eq. (C.23)

and written in terms of the entropy parameters in regions
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(4) and (6) as:
S, - S, =&, - ¢ - Rln(fi) (C.26)

For isentropic flow, Eq. (C.26) reduces to

6

b, = b + le{_f;_‘) (C.27)

where ¢, is found using Eq. (C.25) based on the known
parameters in region (6). Once Eg. (C.27) is solved for ¢,,
Eq. (C.25) may be iteratively solved for the temperature, t.
The thermal equation of state is then used to solve for the
density in region (4).

The conservation of stagnation enthalpy is used in a
different form than for the perfect gas to determine the
velocity components in region (4). Conservation of
stagnation enthalpy across wave (3) provides for the

determination of the stagnation enthalpy in region (4):
h,, = b + %(uhvz),5 (C.28)

The static enthalpy, hs, is a function of T; and is found
using the methods described in Appendix B and the velocity
components, u, and v, are known. Using the definition of

the slope, 0 = v/u, Eq. (C.28) can be rewritten as:




B, = b + Zuf(1+0}) (C.29)

4

Solving for the axial velocity component in region (4), u,
gives:

2 -
u, = | — (C.30)
1+03

The radial component of velocity, v,, is then computed using
the slope in region (4):
vV, = U,0, (C.31)

The Mach number is then computed :

M, = —mg (C.32)

C.4 Riemann Fluxes

After solving the Riemann problem, the primitive
variables are combined to form the Riemann flux vectors in
regions (0),(2), (4), and (6) (6:171). The E and F flux
vectors are presented in section 3.1 and are repeated here

for convenience.

pu pv
- us+ N pvu
E-=- ppuﬁp , F-= ov2ep (C.33)
u(pe+p) v(pe+p)

The Riemann fluxes are calculated for each of the components

of the B and F vectors. For example, the first component of




the E vector, El is pu and is computed in each of the

Riemann regions (0), (2), (4), and (6):

(E1) 4 = PoUy (C.34)
(E1), = p,u, (C.35)
(E1), = Py, (C.36)
(E1)¢ = peUs (C.37)

The remaining Riemann flux vector components are found in a

similar manner.

C.5 calculation of the Flux Differences

The Riemann flux differences are the differences in the
Riemann flux vector components taken across waves (1), (2)
and (3). For example, the difference of the Riemann fluxes
for the first component of the E vector, dEl, across waves

(1), (2) and (3) are:

(dE1) vy = (E1), - (E1), (C.38)
(dE1) yaver = (E1), - (E1), (C.39)
(dE1) yppes = (E1) - (E1), (C.40)

The sum of the total contributions across all three waves
gives the total contribution at the midpoint of the Riemann

region, node j+1/2 (6:182):

(dEl) /2 = [ (dEl) wava3+ (dEl) wave2+ (d‘El) wavell Jj+1/2 (C. 41)
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The remaining Riemann flux vector components are computed in

a similar manner.

C.6 Splitting the Flux Differences

Referring to Figure C.3 the information is known at
node j on axial plane i, and the solution is sought
downstream at node j on axial plane i+l. The solution of
the Riemann problem calculated the fluxes at the midpoints
j+1/2 and j~1/2. The Riemann flux differences were
calculated and are now split along their direction of
propagation to determine which information from Riemann
nodes j+1/2 and j-1/2 will reach node j at plane i+l.

Following the method detailed by Doty (3:183-186) the
flux differences are propagated in a direction determined by
streamlines and characteristics. At node j+1/2, if the
slope of waves (1), (2), or (3) is negative, the Riemann
flux differences across those waves contribute to the
solution at the downstream node (i+1,j) (6:185).
Conversely, at node j+1/2, if the slope of waves (1), (2),
or (3) is positive, the Riemann flux differences across
those waves do not contribute to the solution at (i+1,3J)
but, would contribute to the solution at node (i+1,7j+1).
Similarly, at Riemann node j-1/2, if the slope of waves (1),
(2), or (3) is positives, The Riemann flux differences
across those waves contribute to the solution at node

(i+1,3). The Riemann flux differences are essentially split
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into positive and negative contributions at each Riemann
node.

The contributions at the downstream node (i+1,j) are
found by summing the positive contributions of the Riemann
flux differences from node j-1/2 and the negative

contributions of the Riemann flux differences from node

j+1/2:
dEj.yz = [ABFESS) + [aErafs] + [dBraTs] (Cc.42)
+ + +
dEj .2 = [AESSTS] + [ABFAZE) + [AETAT:] (C.43)

where the positive or negative signs denote positively or
negatively sloped flux differences. It is possible that
all, some, or none of the Riemann flux differences at a
Riemann midpoint node may contribute toc the downstream
solution at a Riemann node, depending on their
characteristic slope. The same procedure is applied to the
F vector. Further details on the splitting of the flux

differences are presented in Appendix J of reference (6).
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Figure C.1. General property distribution and Riemann
description (6:135).

1,4

Figure C.2. Riemann problem for planar supersonic flow
and resulting wave pattern (6:174).
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Flux differences and splitting (6:187).

C-14




Appendix D: FDS Decode Procedures

D.1 Introduction

The upwind FDS algorithm solves the downstream E and F
flux vectors based on the solution of the Riemann problem
generating Riemann fluxes that are then split along their
physically correct path of propagation as discussed in
Appendix C. To continually march the solution from plane i
to i+1 the values of the primitive variables are required at
each plane to solve the Riemann problem. A decode procedure
is required at each axial plane to extract the primitive
variables from the calculated flux vectors. This decode
procedure is dependent upon the thermodynamic model utilized

in the flowfield solution.

D.2 Perfect Gas Decoding

The perfect gas decode procedure is detailed in
reference (6) and summarized herein. The four components
of the E vector, E1, E2, E3, and E4, are known from the
spatial marching of the FDS algorithm. The decoding of the
E vector, see Eq. (3.2), requires the simultaneous solution
of five equations for the five unknowns p, u, v, p, and e
contained in the E flux vector.

The pe term contained in the E4 component can be

written in terms of the internal energy and flow energy:




pe = pa + %p(u“v"’) (D.1)

For a perfect gas the specific internal energy, 1, is

written as (1:388):

a=c,T (D.2)

v

where c, for a perfect gas can be written in terms of the

gas constant, R, and the ratio of specifc heats, v, as:

- R (D.3)

c

v Y_l
Using the thermal equation of state and the relations for a
in Eq. (D.2) and ¢, in Eq. (D.3),the expression for the term

pe in Eq. (D.1l) can be rewritten as:

pe = Y€1 +-%p(u2+v2) (D.4)

Using Eq. (D.4) for the pe term, the E4 component is

given by:

E4 = ul(

B+ Sp(uv) + pl (D.5)

Expanding Eq. (D.5) and rearranging yields:

E4 = u 7!3] + -;-pu(uzﬂlz) (D.6)

The E2, E3, and E4 components can be written in terms of the

El component, pu, to give:

E2 = (El)u +p (D.7)




E3 = (E1)v (D.8)

_ 1 1
E4 = up[-Y_‘[T] + = (E1) (u?) + 3 (E1) (v?) (D.9)

Solving Eq. (D.8) for the radial velocity, v, gives:

v = E3 (D.10)

1

()

Similarly, Eq. (D.8) can be solved for the pressure, p:
b = E2 - (E1)1u (D.11)

Egs. (D.10) and (D.11) can now be substituted into the E4
component equation, Eq. (D.9) to yield an expression that is
solely a function of the known E vector components and one

unknown, u:

} _ 1 1 E37?
E4 = '{?&]“EZ) (E)u + = (E1) (u?) + 3 (El)[ﬁ] (D.12)

Casting this expession as a quadratic equation yields:

*1 - _1 (B3
-Z—(Y_{_—]_)-(El)]uz [-Y—Y__l(EZ)]u+[(E’4) = (El)] 0 (D.13)

This quadratic equation is then used to find the value of

the axial velocity, u:

u=_2* Vfa - dac (D.14)

where:
= _Y*1 (g1 D.15
a 2(Y‘1)( ) ( )




b=-Y_(E2) (D.16)
Y-1

c = (E’4)—% ((EE31))2 (D.17)

The remaining primitive flow variables are then found from:

E.

W

v- 5 (D.18)
D = E2-(El)u (D.19)

p = f:"'ui (D.20)

pe = Y%afh%p(u2+vz) (D.21)

The perfect gas decode procedure is then complete.

D.3 Imperfect Gas Decoding

The imperfect gas decode procedure development follows
the procedure presented in refernece (13). The difference
in the decoding of the E vector for the calorically
imperfect gas is that the internal energy term, pe, in the
E4 component must be consistent with the imperfect gas
assumption (13:75). Specific internal energy, u, for the

calorically imperfect gas is given by (1:395):

Q=h-RT (D.22)




The total internal energy for the imperfect gas is then
found by substituting Eq. (D.22) into the pe expression, Eq.

(D.1) to yield:

pe =ph-p+ p%(u2+v2) (D.23)
Substituting Eq. (D.23) into the E4 component gives:

E4 = puh +-%pu(u2+vz) (D.24)

Substituting the E1 component, pu, and the E3 component,
puv, into Eq. (D.24) gives the following form of the E4

component:

E4 = h(E1) + %(El)uz + % (Eé)z (D.25)

Eq. (D.25) is now a function of the axial velocity, u, and
the enthalpy, h. The enthalpy is a function of temperature
which is determined from the least squares coefficient as
discussed in Appendix B. The thermal equation of state,
which is still valid for the calorically perfect gas, and
the E1 component are combined to yield an expression for u:

(E1) RT
b

u = (D.26)

Solving the E2 component for p and substituting the result
into Eq. (D.26) yields:

_ _(E1)RT
U= e (D.27)




Rearranging Eq. (D.27) a quadratic for u is developed:
(E1)u? + (E2)u + (E1)RT = 0 (D.28)

which when solved for u yields:

u = E2 + J(E2) -4(E1) ((EI)RT (D.29)
2(E1)

The E4 component is now a function only of temperature with
both h and u dependent on the temperature value. The
temperature, T, is found iteratively using the secant method
and Egs. (D.28) and (D.29) (13:77).

Once the temperature is determined, u is determined
from the quadratic relation. The remaining primitive
variables are found using the perfect gas decode procedure

of Egs. (D.18) - (D.21).
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